Epidemiologic Notes and Reports
541 Penicillinase-Producing Neisseria gonorrhoeae - Los Angeles, California 543 Tuberculosis in a Drug Rehabilitation Center - Colorado
549 Measles Vaccination Reactions Among College Students - North Carolina, Massachusetts
551 Raccoon Rabies - Florida

Epidemiologic Notes and Reports

Penicillinase-Producing Neisseria gonorrhoeae - Los Angeles, California

In the period August 1-October 17, 1980, 149 cases of infection due to penicillinaseproducing Neisseria gonorrhoeae (PPNG) were reported in Los Angeles County, California. This represents a sharp increase compared to the 11 cases reported from March 1976 through December 1979 and to the 26 cases reported during the first 7 months of 1980 (Figure 1). Although cases were reported from 21 of the 27 health districts in the county, the majority of recent cases were in the Long Beach, Compton, South, Southeast, Southwest, and Inglewood health districts (Figure 2). Except for Long Beach, these are districts which historically have had relatively high reported rates of non-PPNG gonococcal infections as compared to the rest of the county. Of the 68 women reported with PPNG infection since August 1, 1980, 18 (26.5\%) have had signs or symptoms of acute salpingitis.

Unlike PPNG cases in most other areas of the United States, only 6\% of the Los Angeles County cases in 1980 could be traced to infection acquired outside of the United States. Sustained disease transmission has occurred among county residents; as many as 6 persons have been consecutively infected in a single chain of transmission.

Control activities have been concentrated in 3 major areas. First, recommendations FIGURE 1. Reported cases of penicillinase-producing Neisseria gonorrhoeae, Los Angeles County,* January 1-October 17, 1980

[^0]PPNG - Continued
FIGURE 2. Gonorrhea rates for 1978 and the number of cases of penicillinase-producing Neisseria gonorrhoeae in Los Angeles County Health Districts, August 1-October 17, 1980

concerning diagnosis, treatment, and reporting of PPNG infections were sent to all health care providers in the county. Second, public laboratories have begun testing all pretreatment and post-treatment gonococcal isolates for B-lactamase production. Excluding testing done on isolates from sexual contacts of known PPNG cases, 1,797 tests have been done since the middle of September 1980. Of these tests, 34 (1.9%) have been positive. In testing done by the Inglewood health district laboratory, 3.7\% of pretreatment isolates have been PPNG. Recommendations to begin similar testing programs have been made to all laboratory directors in the county. Third, efforts to interview all persons with PPNG infections and to locate their contacts have been intensified. Since August 1, 1980, 97\% of the 149 PPNG-infected persons have been interviewed. The proportion of cases brought to treatment through contact tracing has risen from 20% in August to 43% in September and October.
Reported by MD Finn, MD, MPH, RL Barnes, PhD, JN Spencer, County of Los Angeles Dept of Health Services; California Dept of Health Services; Bur of State Services, CDC.
Editorial Note: The establishment of an endemic focus of PPNG infections in Los Angeles and recent increases in cases reported from other metropolitan areas, such as Pierce County (Tacoma), Washington, and New York City, emphasize the need for continuing surveillance for these cases. CDC recommends that all positive post-treatment gonorrhea cultures be tested for B-lactamase production. Health departments in areas that are experiencing outbreaks of PPNG infections or in which cases unrelated to importation are occurring should consider expanding B-lactamase testing programs to include all pretreatment gonococcal isolates.

To minimize the spread of PPNG infections, previously published CDC guidelines for spectinomycin use (1) are still appropriate for all parts of the United States. However,

PPNG - Continued
further increases in the prevalence of PPNG in particular areas may necessitate expanding spectinomycin use to include the initial treatment of all patients with uncomplicated gonococcal infection from these areas. Such a change in treatment practice should be considered when more than 5% of gonococcal isolates in a particular area are penicillin resistant.

Clarification: In a previous report (1), CDC recommended the following regimen for treatment of PPNG pharyngeal infections: sulfamethoxazole/trimethoprim 9 tablets $(400 \mathrm{mg}$ sulfamethoxazole $/ 80 \mathrm{mg}$ trimethoprim per tablet) daily for 5 days; these tablets should be taken as a single daily dose. Sulfamethoxazole/trimethoprim should be avoided by pregnant or nursing women (2).
References

1. MMWR 1980;29:381-2.
2. Rubin RH, Swartz MN. Trimethoprim-sulfamethoxazole. N Engl J Med 1980;303:426-32.

Tuberculosis in a Drug Rehabilitation Center - Colorado

In April 1979, a 23 -year-old woman was found to have symptomatic, cavitary pulmonary tuberculosis with sputum smears markedly positive for acid-fast bacilli. Before a chest X ray was taken and the diagnosis made, the patient had been seen several times by a physician over a period of months for cough, sputum production, fever, malaise, and weight loss.

The patient lived in a drug rehabilitation center that housed 52 other adults and 13 children. During the day, she took care of 8 children, 7 of whom slept in a single room adjacent to hers. Seven women shared her sleeping quarters. She had few contacts outside the center.

Initial skin testing of the residents identified 18 (35%) adults and 8 (62%) children with a response of greater than 5 mm of induration to 5 tuberculin units of purified protein derivative (PPD). Seven of the children had chest X-ray abnormalities compatible with current tuberculosis. Skin-test conversions were observed in 12 adults at 1 month, 2 adults at 3 months, and none at 6 months. Thus, the overall rate of infection was 62% (40 of 65). Grouping the residents according to intimacy of contact with the source patient showed the following skin-test reactivity rates: (1) women roommates - 7/7 (100%); (2) children under her daily care $-7 / 8$ (88%); (3) other women $-6 / 8(75 \%)$; (4) men - $19 / 37(51 \%)$; and (5) other children - $1 / 5(20 \%)$.

The 7 children with current tuberculosis were treated with isoniazid (INH) and rifampin. All skin-test positive persons plus the skin-test negative child who had been under the patient's daily care were given a 1 -year course of INH preventive therapy.
Reported by BJ Catlin, RN, F Hanson, MD, MD Iseman, MD, JA Sbarbaro, MD, Denver Dept of
$H_{\text {Health }}$ Health and Hospitals; RS Hopkins, MD, State Epidemiologist, Colorado State Dept of Health; and
Tuberculosis Tuberculosis Control Div, Bur of State Services, CDC.
Editorial Note: This episode demonstrates several principles in the investigation and control of tuberculosis. First, although transmission of tuberculosis is most often observed among close family contacts, it is also common among close contacts in institutional settings. For example, outbreaks in nursing homes and prisons have recently been reported (1-4). Second, repeat skin testing is necessary to identify recently infected persons who had not developed reactivity at the time of the initial investigation. Such reactivity usually becomes apparent $2-10$ weeks after infection. Third, contact investiga-

Tuberculosis - Continued

tion may be divided into "concentric circles" of exposure. Investigation need not be further extended when the "circle" under investigation exhibits a prevalence of infection no greater than the background rate for the group being evaluated.

All close contacts with a positive tuberculin test and close contacts with a negative skin test who are at high risk of disease should be examined for current tuberculosis. If disease is present, the patient should be treated with 2 or more antituberculosis drugs. If disease is not present, the person should be given INH preventive therapy. More detailed guidelines for the investigation and management of tuberculosis contacts have been published $(5,6)$.

References

1. Stead WW. Epidemic of tuberculosis among elderly residents of a nursing home. Am Rev Respir Dis 1980;121:462 (abstract).
2. MMWR 1979;27:523-5.
3. Stead WW. Undetected tuberculosis in prison: source of infection for community at large. JAMA 1978;240:2544-7.
4. MMWR 1980;28:465-7.
5. American Thoracic Society. Guidelines for the investigation and management of tuberculosis contacts. Am Rev Respir Dis 1976;114:459-63.
6. American Thoracic Society and Center for Disease Control. Preventive therapy of tuberculosis infection. Am Rev Respir Dis 1974;110:371-4.

TABLE I. Summary - cases of specified notifiable diseases, United States [Cumulative totals include revised and delayed reports through previous weeks.]

DISEASE	45th WEEK ENDING		$\begin{aligned} & \text { MEDIAN } \\ & \text { 1975-1979 } \end{aligned}$	CUMULATIVE. FIRST 45 WEEKS		
	$\begin{gathered} \text { Novamber } 8 \text {, } \\ 1980 \end{gathered}$	$\begin{gathered} \text { Novembar 10, } \\ 1979 \\ \hline \end{gathered}$		$\begin{gathered} \text { N ovember } \mathrm{g}, \\ 1980 \\ \hline \end{gathered}$	$\begin{gathered} \text { Novemher 10, } \\ 1979 \end{gathered}$	$\begin{gathered} \text { MEDIAN } \\ \text { 1975-1 } 1979 \\ \hline \end{gathered}$
Asaptic meningitis	169	227	83	6,403	7.303	4.120
Brucallosis		-	4	155	151	195
Chickenpox	1,360	1,274	1,470	162,246	177,421	158.299
Diphtheria	-		1	${ }_{4}$	177. 59	76
Encephalitis: Primary (arthropod-borne \& unspec.)	35	28	24	986	952	1.048
Post-infectious	3	2	2	188	211	211
Hepatitis, Viral: Type B	403	298	237	15,491	12,640	12,885
Type A	581	606	573	24,318	25,780	26.486
Type unspecified	263	232	185	10,203	8,984	7. 295
Malaria	38	20	10	1,670	665	473
Measles (rubeola)	25	88	174	13.118	12,676	25,000
Meningococcal infections: Total	56	41	31	2,282	2,247	1.500
Civilian Military	56	41	31	2,271	2,227	$\begin{array}{r}1.489 \\ \hline 10\end{array}$
Mumps	81	144	329	7.149	12,161	18.304
Pertussis	30	25	26	1,449	1,189	1,406
Rubella (German measles)	18	60	85	3,481	11,113	15.482
Tetanus	4	3	2	. 64	11, 62	- 65
Tubarculasis	529	475	559	23,759	23,777	26,101
Tularemia	-	-	3	187	173	124
Typhaid fever	15	13	8	447	449	366
Typhus fever, tick-borne (Rky. Mt. spotted)	11	9	5	1,106	1.000	1,000
Veneral diseases: Gonorrhea: Civilian Military	22.659	$\begin{array}{r} 19,553 \\ 637 \end{array}$	19,202	869,217 23,518	$\begin{array}{r} 868,348 \\ 24,032 \end{array}$	$\begin{array}{r} 868,348 \\ 24,032 \end{array}$
Military Syphilis, primary \& secondary: Civilian	$\begin{aligned} & 663 \\ & 601 \end{aligned}$	$\begin{aligned} & 637 \\ & 541 \end{aligned}$	$\begin{aligned} & 495 \\ & 404 \end{aligned}$	$\begin{aligned} & 23,518 \\ & 73.391 \end{aligned}$	24.032 21.598	$\begin{aligned} & 24,032 \\ & 20,882 \end{aligned}$
Military	1	8	5	268	21.572	272
Rabies in animals	108	91	62	5.537	4,458	2,715

TABLE II. Notifiable diseases of low frequency, United States

	CUM. 1980		CUM. 198]
Anthrax	1	Poliomyelitis: Total	8
Botulism	56	Paralytic	6
Cholera	8	Psittacosis Ups. N.Y. 1, Fla. 1	94
Congenital rubella syndrome	46	Rabies in man	-
Leprosy III. 1	192	Trichinosis Ohio 1	101
Leprospirosis Fla. 1, Hawaii 1	66	Typhus fever, flea-borne (endemic, murinel	61
Plague	18		

[^1]TABLE III. Cases of specified notifiable diseases, United States, weeks ending November 8, 1980, and November 10, 1979 (45th week)

AEParting area	ASEPTIC MENIN. GITIS 1980	BRU. CEL LOSIS 1980	$\substack{\text { CHICKEN- } \\ \text { POX }}$ 1980	QIPHTHERIA		ENCEPHALITIS			HEPATITIS (VIRAL). BY TYPE			MALARIA	
						Primary		Postinfactious 1980	$\frac{B}{1980}$	$\frac{A}{1990}$	Unspecified1980		
				1980	$\begin{aligned} & \text { CUM. } \\ & \text { 1980 } \end{aligned}$	1980	1979					1980	$\begin{aligned} & \hline \text { cum. } \\ & 1980 \\ & \hline \end{aligned}$
United states	169	1	1.360	-	4	35	28	3	403	581	263	33	1,670
NEW ENG LAN Maine N.H. V . Mans. R.I. Conn.	5	-	176	-	-	-	-	-	11	13	a	5	99
	5	-	77	-	-	-	-	-	-	-	-	-	14
	1	-	13	-	-	-	-	-	-	2	1	-	7
	-		20	-	-	-	-	-	$\overline{7}$	-	7	$\overline{4}$	1
	2	-	31	-	-	-	-	-	7	3	1	4	54
	2	-	7 28	-	-	-	-	-	2	4	-	1	19
mid. Atlantic Upitate N.Y. N.Y. City N.J. Pa.	47	-	48	-	1	7	3	-	48	33	18	3	220
	8	-	41	-	$-$	-	1	-	6	8	4	1	37
	8	-	7	-	1	2	1	-	20	9	1	-	6.1
	3	-	NN	-	-	5	1	-	22	16	13	2	56
	28	-	-	-	-	5	-	-	NA	NA	NA	-	86
E.N. CENTRAL Ohio Ind. III, Mich. Win.	21	-	625	-	1	6	6	1	30	58	18	7	104
	1	-	57	-	-	6	3	1	5	9	7	2	18
	-	-	52	-	-	-	-	-	5	8	2	-	12
	2	-	56	-	-	-	-	-	6	21	4	3	40
	12	-	291	-	1	-	3	-	13	17	5	1	23
	6	-	169	-	-	-	-	-	1	3	-	1	11
W.N. CEN Minn. lowa Mo. N. Dak. S. Dak. Nebr. Kans.	4	-	283	-	1	-	1	1	12	25	7	-	69
	-	-	-	-	-	-	-	-	3	4	1	-	25
	2	-	102	-	$\bar{\square}$	-	1	-	4	3	3	-	7
	-	-	2	-	1	-	-	-	-	2	3	-	13
	-	-	17	-	-	-	-	-	-	-	-	-	-
	-	-	40	-	-	-	-	-	$\overline{7}$	-	-	-	4
	$\overline{7}$	-	-	-	-	-	-	$\overline{7}$	1	-	-	-	7
	2	-	122	-	-	-	-	1	4	16	-	-	13
§. ATLAN Del. Md. D.C. V. $W_{\text {W }}, V_{\text {a }}$ N.C. s.c. Ga. Fla.	23	-	89	-	-	4	4	-	102	69	17	-	174
	-	-	-	-	-	-	$\overline{3}$	-	1	-	1	-	-
	1	-	8	-	-	3	3	-	10	3	2	-	29
	-	-	-	-	-	$\overline{1}$	-	-	2	-	2	-	5
	1	-	1	-	-	1	-	-	10	4	2	-	59
	$\overline{4}$	-	29	-	-	-	-	-	3	7	-	-	4
	4	-	NN	-	-	-	1	-	9	2	5	-	17
	1	-	-	-	-	-	-	-	13	1	1	-	10
	-	-	-	-	-	-	-	-	31	18	-	-	17
	16	-	51	-	-	-	-	-	23	34	6	-	35
Es. CENTRAL Ky. Tenn. Al_{2} Min.	9	-	7	-	-	4	4	-	28	43	5	-	12
	5	-	7	-	-	3	-	-	4	15	1	-	3
	1	-	NN	-	-	-	2	-	11	18	2	-	-
	3	-	-	-	-	-	-	-	12	4	2	-	7
	-	-	-	-	-	1	2	-	1	6	-	-	2
W.S CENTRAL Ark. Le. Okla. Tex.	19	-	38	-	-	8	4	-	26	88	56	2	141
	-	-	2	-	-	-	-	-	3	11	2	-	8
	-	-	NN	-	-	-	1	-	-	12	1	-	42
	6	-	-	-	-	-	2	-	2	7	1	-	12
	13	-	36	-	-	8	1	-	21	58	52	2	79
MOUNTAIN Mont Idaho Hyo. Colo. N. Mex. Ariz. Utah Nov.	9	-	62	-	-	2	5	-	11	29	15	1	87
	1	-	15	-	-	2	1	-	1	2	1	1	1
	-	-	4	-	-	-	-	-	-	1	-	-	1
	-	-	-	-	-	-	-	-	-	-	-	-	2
	2	-	43	-	-	1	2	-	3	11	2	-	34
	-	-	-	-	-	-	-	-	-	5	-	-	6
	1	-	NN	-	-	-	-	-	4	9	10	1	18
	-	-	-	-	-	-	2	-	1	1	1	-	15
	5	-	-	-	-	1	-	-	3	2	2	-	10
PACIFIC Werh. $\mathrm{O}_{\mathrm{reg}}$. Calif. Alasika Havraii	32	1		-		4	1	1	135	223	119	20	764
	4	$\underline{1}$	24	-	1	4	1	$\underline{-}$	13	223	119	20	49
	4	-	2	_	-	-	-	-	7	18	2	5	45
	24	1	-	-	-	4	1	1	124	204	117	15	647
	-	-	2	-	-	-		-	1	1	-	-	6
	-	-	4	-	-	-	-	-	3	-	-	-	17
GuarmP.R.V.l.Pac. Trust Terr.NN:													
	NA	NA	NA	NA	-	NA	-	-	NA	NA	NA	NA	3
	-	-	11	-	-	-	_	-	-	5	1	-	3
	NA	NA	NA	NA	-	NA	-	-	va	NA	NA	NA	-
	NA	NA	NA	NA	-	NA	-	-	va	NA	NA	NA	2

All delayed nifiable.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending November 8, 1980, and November 10, 1979 (45th week)

heporting area	MEASLES (RUBEOLA)			MENINGOCDCCAL INFECTIONS total			MUMPS		PERTUSSIS	RUBELLA		$\begin{array}{\|c} \text { TETANUS } \\ \hline \text { CUM. } \\ 1980 \end{array}$
	1980	CUM. 1980	$\begin{aligned} & \text { CUM. } \\ & 1979 \end{aligned}$	1880	$\begin{aligned} & \text { CUH. } \\ & 1980 \end{aligned}$	$\begin{aligned} & \text { CUM. } \\ & 1979 \end{aligned}$	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	1980	1980	$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	
UNITED STATES	25	13.118	12.676	56	2,282	2,247	81	7.749	30	18	3.481	64
NEW ENGLAND	-	672	290	4	127	127	1	584	2	1	209	3
Maine	-	33	17	1	6	7	-	298	1	-	68	1
N.H.	-	328	33	-	8	13	-	22	1	-	37	-
Ve	-	226	119	-	14	7	-	12	-	-	3	-
Mass	-	59	15	3	44	47	-	124	-	-	71	-
R.I.	-	2	102	-	9	8	1	30	-	-	9	1
Conn.	-	25	4	-	46	45	-	98	-	1	21	1
MID. ATLANTIC	5	3.806	1,546	9	400	350	17	869	5	1	562	8
Uprtatio N.Y.	3	701	650	-	121	120	6	138	2	1	215	3
N.Y. City	2	1,196	791	2	100	79	1	93	2	-	99	2
N.J.	-	828	58	1	83	90	2	117	1	-	101	-
Pa	-	1,081	47	6	96	61	8	520	-	-	146	3
E.N. CENTRAL	1	2.448	3.318	8	264	251	37	2,913	4	1	833	4
Ohio	-	380	282	1	85	98	14	1,116	1	-	8	1
Ind.	1	93	223	-	41	44	2	136		1	334	-
III.	-	347	1,457	3	54	22	4	3月3	1	-	165	1
Mich.	-	250	840	4	68	68	14	374	1	-	129	1
Wis	-	1.378	516	-	16	19	3	344	-	-	177	1
W.N. CENTRAL	-	1,321	1.799	5	100	72	3	301	-	-	200	4
Minn.	-	1,105	1.218	4	34	15	1	19	-	-	28	1
Iowa	-	-	16	-	11	13	-	51	-	-	9	1
Ma.	-	65	417	-	38	33	-	10 L	-	-	42	1
N. Dak.	-	1	21	-	2	1	-	4	-	-	5	
S. Dak.	-	-	2	1	6	4	-	4	-	-	2	-
Notr.	-	83	51	-	-	-	-	9	-	-	1	
Kars.	-	67	74	-	9	6	2	113	-	-	113	1
S ATLANTIC	3	1.964	2.014	12	538	549	9	1.050	3	3	345	11
Dal.	-	3	1	-	2	5	-	43	-	-	1	
Md.	-	83	16	2	49	53	-	340	-	-	71	1
D.C.	-	5	-	-	2	-	=	4	-	-	1	
Va.	-	339	275	4	55	78	-	71	-	3	56	3
W. Ve.	1	16	60	-	20	9	5	119	-	-	26	1
N.C.	-	130	114	-	94	85	1	94	-	-	46	1
S.C.	-	159	174	-	60	59	1	207	-	-	54	3
Ga.	-	826	521	5	101	80	1	10	2	-	-	2
Fla.	2	403	853	1	155	1 H0	1	165	1	-	90	2
ES. CENTRAL	1	334	212	4	194	162	1	877	2	2	86	6
Ky.	1	56	37	1	59	34	-	755	2	2	42	2
Tenn.	-	172	66	3	54	45	-	30	-	-	39	2
Ala	-	22	85	-	52	38	-	29	-	-	3	2
Misi	-	84	24	-	29	45	1	63	-	-	2	-
W.S. CENTRAL	5	972	926	4	243	332	3	278	1	1	137	18
Ask.	-	16	7	-	19	25	-	22	1	-	4	2
Ls.	-	12	254	-	90	118	-	68	-	-	12	5
Orla	-	776	22	1	21	37	-	-	-	-	6	1
Tex.	5	168	643	3	113	152	3	198	-	1	115	10
MOUNTAIN	4	494	324	5	95	88	1	212	10	1	158	-
Mont	-	2	56	-	3	10	-	58	-	-	45	
Idetho	-	-	18	1	6	9	-	16	3	-	22	-
Wya.	-	-	36	1	4	1	-	-	-	-	1	
Colo	-	24	68	-	23	5	1	59	-	-	12	,
N. Mans.	-	14	38	-	10	5	-	-	1	-	5	-
Ariz.	3	397	77	-	15	36	-	41	6	1	39	-
Utsh	-	47	19	-	5	9	-	27	-	-	28	-
Nov.	1	10	12	3	29	13	-	9	-	-	6	-
PACIFIC	6	1,107	2,247	5	321	316	9	666	3	8	951	10
Waxh.	-	177	1,139	1	59	54	2	140	-	-	86	,
Oreg	-	-	62	-	51	26	2	86	-	-	62	
Celif.	6	918	961	4	202	220	5	408	3	8	786	10
Alarka		6	17	-	9	6	-	12	-	-	12	-
Hawaii	-	6	68	-	-	10	-	20	-	-	5	-
Guam	MA	6	12	-	1	1	NA	10	NA	NA	2	12
P.R.	,	157	370	-	9	6	1	144	-	-	23	12
V.I.	NA	6	5	-	1	3	NA	2	NA	va	-	
Pect Trust Terr.	NA	10	9	-	-	1	NA	21	NA	va	1	

NA: Not available.
All delayed reports and corrections will be included in the following week's cumulative totals.

TABLE III (Cont.'d). Cases of specified notifiable diseases, United States, weeks ending November 8, 1980, and November 10, 1979 (45th week)

Heporting area	TUBERCULOSIS		TULA. REMIA CUM. 1980	TYPHOID FEVER		TYPHUS FEVER (Tick-barne) (RMSF)		VENEREAL DISEASES (Civilian)						RABIES (in Animals) CUM. 1980		
			GONORRHEA			SYPHILIS (Pri. \& See.)										
	1980	$\begin{aligned} & \text { CuM. } \end{aligned}$		1980	$\begin{aligned} & \hline \text { CUM. } \\ & 1980 \\ & \hline \end{aligned}$			1980	$\begin{aligned} & \hline \text { CUM. } \\ & 1980 \end{aligned}$	1880	$\begin{aligned} & \text { CUM. } \end{aligned}$	$\begin{aligned} & \hline \text { CUM. } \\ & 1979 \end{aligned}$	1980		$\begin{aligned} & \text { CUM. } \\ & 1980 \end{aligned}$	$\underset{1979}{\text { CUM. }}$
UNITED STATES 529		23,759		187	15		11		22,659		868,348	601	23.391	21,598	5,537	
NEW ENGLAND Maine N.H. V_{t} Masa	15	664	6	-	11	-	14	580	22,025	21.380	13	454	426	55		
	-	46	-	-	1	-	-	18	1,252	1,536	,	6	10	24		
	-	15	-	-	-	-		14	778	748	-	5	16	7		
	2	24	$\overline{7}$	-	$\overline{7}$	-	$\overline{7}$	8	491	540	-	6	2	-		
Mass R.I.	7	368	4	-	7	-	7	261	9,278	8,447	11	272	243	14		
Conn	2	64 147	1	\pm	1	-	2 5	40 239	1,419 8,807	1,730 8,369	$\stackrel{1}{1}$	29 136	116	1 9		
MID. ATLANTIL Upstate N.Y. N.Y. City N.J. Pa																
	81	3.831 $\quad 729$	3	-	83 14	-	48	2.859 546	96,219 17,725	94.995 16.447	57 7	3.162 283	3,254 231	68 36		
	33	1,386	1	-	37	-	3	1,000	37,367	37,227	36	2.025	2,215	36		
	30	848	1	-	19	-	19	661	17,763	16,889	7	386	430	13		
	12	868	-	-	13	-	12	652	23,364	24,432	7	468	378	19		
EN. CENTRAL Ohio Ind. III. Mich. Wis.	94	3,418	1	3	47	2	28	3,364	134,825	136,204	134	2,383	2,720	842		
	20	619	-	1	13	2	15	785	35,088	37,450	10	326	523	53		
	15	377	-	-	-	-	2	497	14,176	11,375	5	170	188	69		
	22	1,179	$\bar{\square}$	-	18	-	6	1.036	42,651	43.138	91	1,443	1.536	455		
	34	1,031	1	1	11	-	3	825	30,740	31.875	23	356	400	15		
	3	212	-	1	5	-	2	221	12,170	12,356	5	88	73	250		
W.N. CENTRAL Minn. lowa Mo. N. Dek. S. Dak. Nabr. Kans.	15	856	29	-	27	-	54	981	42,008	43,005	12	317	271	1.785		
	4	159	1	-	3	-	-	241	6.851	7,168	6	105	77	202		
	1	79	1	-	2	-	3	84	4,410	5,147	-	23	29	406		
	5	403	24	-	18	-	34	430	18,879	18,447	4	149	125	348		
	3	45	-	-	1	-	-	11	576	749	-	4	2	212		
	-	42	-	-	1	-	2	21	1,210	1,419	-	5	2	385		
	2	37	1	-	1	-	5	65	3,249	3,026	2	10	6	90		
	-	91	2	-	1	-	10	129	6,963	7.049	-	21	36	142		
S. ATLA Dal, Md . D.C. V_{a} W. V_{a} N.C. S.C. $\mathrm{Ga}_{\mathbf{a}}$ Fla	103	5,227	10	-	43	5	693	5,769	219.361	209,997	137	5,672	5,115	446		
	-	66	-	-	1	-	2	128	3,058	3,474	-	15	27	1		
	29	629	2	-	3	-	73	458	23,331	25,912	10	394	325	32		
	7	325	-	-	4	-	-	311	15,039	13,914	6	421	390	-		
	-	556	-	-	8	2	95	450	20.122	20,092	19	513	411	23		
	2	188	$\bar{\square}$	-	4	-	5	76	2,994	2,849	-	16	45	24		
	17	937	3	-	5	2	314	1.042	33,111	30,422	9	424	387	20		
	6	449	-	-	3	-	140	631	20,572	19,744	6	329	267	59		
	5	710	5	-	-	1	57	1,419	42.947	39,516	36	1,612	1,424	221		
	37	1,367	-	-	15	-	7	1,254	58,181	54,074	51	1.948	1,839	66		
E.S. CENTRAL Ky. Tonn. Al_{a} Ming.	48	2,193	10	-	12	-	113	2,472	11,173	73,736	64	1,950	1,448	308		
	12	494	-	-	3	-	19	199	10,352	9.871	1	117	144	131		
	22	712	7	-	1	-	61	931	25,667	26,681	33	821	603	127		
	5	572	1	-	3	-	17	1.030	21.235	21,807	19	433	265	50		
	9	415	2	-	5	-	16	312	13,919	15.377	11	579	436			
W. S CENTRAL Ark La Okla Tax.	51	2,649	85	3	70	3	135	2,514	108,425	111,795	76	4.628	3,914	1,266		
	6	294	57	-	8	1	35	144	8,885	8,663	4	194	138	166		
	-	500	-	-	2	-	3	378	19,882	20,000	-	1.164	975	14		
	8	296	20	\checkmark	6	2	70	255	10,985	11,092	1	93	80	226		
	37	1.561	8	3	54	-	21	1.737	68,673	12,040	71	3,177	2,121	860		
MOUNTAI Mont ldaho Wra. Colo. N. Mex. Ariz. Uth Nav.	25	671	32	$=$	26	-	16	833	33,350	34,836	6	580	431	229		
	-	30	9	-	1	-	3	NA	1,020	1,716	NA	5	8	55		
	-	25	1	-	1	-	1	53	1,489	1,540	-	26	25	2		
	$\overline{7}$	20	4	-	-	-	2	23	984	999	1	12	8	15		
	7	113	8	-	7	-	5	185	9.099	9,276	4	152	89	54		
	4	124	2	-	3	-	4	55	4.092	4,266	-	103	78	44		
	11	288	1	-	7	-	-	333	8,970	9,707	-	190	125	55		
	3	43	5	-	7	-	1	34	1,686	1,777	-	15	4	3		
	-	28	2	-	-	-	-	150	6,010	5,555	1	77	94	1		
PACIFIC Wach. ${ }^{0} \mathrm{O}_{\mathrm{Eg}}$ Calif. Alaska Havaii	97	4. 250	11	9	128	1	5	3,287	141,751	142.400	102	4.245	4,013	538		
	9	363	-	-	3	-	-	NA	11.659	12,514	NA	189	189	-		
	2	157	4	-	9	-	1	142	9,754	8,939	1	97	150	4		
	86	3,588	6	9	114	1	4	3,031	114,022	113,798	100	3, 814	3,567	488		
	-	53	1	-	-	-	-	68	3,497	4.424	-	137	23	46		
	-	89	-	-	2	-	-	46	2,819	2,725	1	137	84	-		
Guam P.R. V.I. Pace Trust Terr.	NA	52	-	NA	1	NA	-	NA	97	104	NA	5	-	-		
	26	197	-	-	8	-	-	59	2,370	1.903	9	529	502	47		
	NA	-	-	NA	-	NA	-	NA	108	138	NA	10	7	-		
	NA	35	-	NA	-	NA	-	NA	379	422	NA	-		-		

TABLE IV. Deaths in 121 U.S. cities* week ending
November 8, 1980 (45th week)

REPORTING AREA	ALl CAUSES, by age (Years)					$\begin{aligned} & \text { P\& I }{ }^{*:} \\ & \text { TOTAL } \end{aligned}$	heporting anea	ALL CAUSES, BY AGE (YEARS)					$\text { P\& } 1+4$
	AlL AGES	>65	45-64	25-44	<1			$\underset{\text { AGES }}{\text { ALL }}$	>65	45-64	2544	<1	
NEW ENGLAND	683	452	162	36	15	51	S. ATLANTIC	1.230	776	309	79	39	50
Boston, Mass.	176	107	43	12	5	13	Atlanta, Ge.	128	76	38	7	2	2
Bridgeport, Conn.	38	24	11	2	1	2	Baltimore, Md.	322	212	75	20	11	10
Cambridga, Maxs.	25	18	5	2	-	5	Charlotte, N.C.	52	35	10	3	3	4
Fall River, Mass.	30	20	8	2	-	2	Jacksonville, Fla	110	64	23	14	5	1
Hartiord, Conn.	18	49	22	4	3	5	Miami, Fla.	90	57	24	2	3	3
Lowell, Mass.	25	21	4	-	-	4	Norfolk, Va.	57	34	15	6	2	4
Lynn, Mass	25	18	7	-	-	1	Richmond, Va.	64	38	19	3	1	4
New Badford, Mass.	25	18	5	1	1	1	Savannah, Ga.	35	19	13	1	2	2
Naw Haven, Conn.	45	24	11	5	1	4	St. Pateriburg, Fla.	68	56	7	3	2	6
Providance, R.I.	78	50	21	3	2	2	Tampa, Fla.	74	54	14	-	4	10
Somerville, Mass.	8	5	3	-	-	-	Washington, D.C.	194	109	61	19	4	4
Springfield, Mass	35	27	1	-	1	5	Wilmington, Dal.	36	22	10	1	-	
Waterbury, Conn.	20	15	4	-	-	1							
Worcaster, Masi.	75	56	11	5	1	6							
							E.S. CENTRAL	698	399	193	48	32	40
							Birmingham, Ala.	113	61	29	6	13	5
MID. ATLANTIC	2.497	1,669	585	138	49	99	Chattanooga, Tenn.	70	42	24	3	1	6
Albany, N.Y.	44	28		3	2	-	Knoxville, Tenn.	39	23	10	3	1	2
Alentown, Pa	18	16	2	-	-	-	Louisville, Ky.	114	67	29	8	8	7
Buffalo, N. Y.	103	67	24	8	2	4	Memphis, Tenn.	167	90	53	13	2	3
Camden, N.J.	44	27	12	3	-	3	Mobila, Als.	52	30	13	3	4	3
Elizabath. N.J.	20	14	3	-	-	1	Montgomery, Ala.	51	33	12	3	1	5
Erie, Pa. \dagger	42	24	16	-	2	3	Nashville, Tenn.	92	53	23	9	2	5
Jersay City, N.J.	38	21	13	3	-	-							
Nawirk, N.J.	41	19	13	5	1	1							
N. Y. City, N.Y.	1.477	998	337	83	33	47	W.S. CENTRAL	1,327	764	328	137	41	29
Praprson, N.J.	30	18	7	2	1	2	Austin, Tex.	45	31	7	5	1	
Philadelphia, Pa. \dagger	219	134	59	17	3	9	Baton Rouga, La	45	27	12	5	-	1
Pitsturgh, Pa. \dagger	57	42	11	3	1	5	Corpus Christi, Tex.	160	18	5 39	15	1	
Reading. Pa	36	26	9		1	9	Dillas, Tax.	166	98	39	15	8	5
Rochester, N.Y.	133	94	31	4	1	6	EI Paso, Tex.	54	31	17	3	2	4
Schenectady, N. Y.	40	29	10	1	$=$	1	Fort Worth, Tex.	111	71	22	8	6	1
Scranton, Pa. ${ }^{\text {+ }}$	28	23	4	-	1	2	Houston, Tex.	399	194	109	57	10	3
Syracusa, N.Y.	43	28	7	3	1	1	Little Rock, Ark.	66	45	12	${ }^{6}$	1	3
Trenton, $\mathrm{N} . \mathrm{J}$.	31	19	10	2	$\underline{-}$		New Orleans, La.	158	99	43	10	4	5
Utica, N.Y.	23	17	5	1	-	2	San Antonio, Tex.	132	79	32	16	3	5
Yonkers, N.Y.	30	25	5	-	-	3	Shreveport, La.	51 70	30 41	13	4	1	3
EN. CENTRAL Akron, Ohio	2,322	1.409 51	559 16	$\begin{array}{r} 152 \\ 5 \end{array}$	$\begin{array}{r} 114 \\ 2 \end{array}$	62	MOUNTAIN	584	372	130	42	19	20
Canton, Ohio	40	28	9	5	2	2	Albuquerque, N. Max.	67	38	14	6	3	1
Chicago, III.	566	306	141	52	32	9	Colo. Springe, Colo.	24	18	5	-	-	2
Cincinnati, Ohio	142	79	39	13	6	8	Denver, Colo.	126	17	36	8	-	3
Cleveland, Ohio	163	86	47	11	14	3	Las Vegas, Nev.	70	37	21	6	3	
Columbus, Ohio	134	81	28	11	10	6	Ogden, Utah	13	8	21	2	9	
Dayton, Ohio	107	67	24	6	9	2	Phoenix, Ariz.	120	79	21	10	9	4
Datroit, Mich.	251	159	53	14	14	7	Puablo, Colo.	31	25	5	1	4	1
Evansville, Ind.	51	38	10	2	1	1	Salt Lake City, Utah	37	20	8	3	4	9
Fort Wayne, Ind.	63	38	15	3	3	2	Tucson, Ariz.	96	70	18	6	-	9
Gary, Ind.	14	4	7	2	1	-							
Grand Rapids, Mich.	50	30	15	2	3	1							
Indianapolis, Ind.	139	87	37	6	4	2	PACIFIC	1,802	1.157	402	128	55	0
Madison, Wis.	45	25	16	1	3	3	Barkeley, Calif.	23	17	5	5	-	2
Milwaukee, Wis.	163	118	33	5	4	5	Fresno, Calif.	55	40	6	5	2	2
Paoria, III.	55	34	13	4	2	4	Glendala, Calif.	27	23	4	-	-	1
Rockford, III.	51	34	9	3	1	2	Honolulu, Hawaii	47	25	14	3	3	3
South Bend, Ind.	48	38	8	1	-	2	Long Bagch, Calif.	108	70	28	5	2	3
Toledo, Ohio	105	65	28	10	1	2	Los Angales, Calif.	591	363	134	50	16	13
Youngstown, Ohio	57	41	11	1	2	1	Oakland, Calif.	72	54	11	4	1	5
							Pasadena, Calif.	28	21	5	1	-	3
							Portland, Oreg.	110	65	27	7	6	
W.N. CENTRAL	761	509	137	38	42	31	Sacramento, Calif.	65	42	16	2	2	1
Des Moinas, lowa	68	50	7	3	4	3	San Diego, Calif.	131	87	25	12	6	1
Duluth, Minn.	44	36	3	-	4	1	San Francisco, Calif.	150	98	36	9	3	1
Kansas City, Kans.	47	30	10	1	1	2	San Jose, Calif.	157	99	39	10	1	4
Kansas City, Mo.	139	78	36	10	10	9	Seatrle, Wash.	146	92	36	10	,	4
Lincaln, Nebr.	27	19	5	3		1	Spokane, Wash.	50	33	11	3	2	
Minneapolis, Minn.	86	64	10	6	4	-	Tacoma, Wash.	44	28	5	6	4	2
Omaha, Nebr.	76	52	17	1	2	3							
St. Louis, Mo.	143	88	30	6	12	2							
St. Paul, Minn.	62	45	-	5	2	-	TOtAL	11.904	7.507	2,805	798	406	432
Wichita, Kans.	69	47	1.1	3	3	10							

[^2]
Measles Vaccination Reactions Among College Students - North Carolina, Massachusetts

The increasing proportion of measles cases among young adults in recent years has resulted in immunization programs for civilians in outbreak situations as well as ongoing immunization programs for personnel in military training centers. Such programs have raised the issue of whether these populations experience severe side effects from measles vaccination (1). However, 2 recent studies, done in North Carolina and Massachusetts and detailed below, support the growing evidence $(2,3)$ that young adults are not at increased risk of serious adverse reactions from measles vaccination.

North Carolina: In response to a measles outbreak in Orange County, North Carolina, a measles vaccination campaign was carried out in February 1980 at the University of North Carolina (UNC), Chapel Hill. In the county, there were 41 measles cases with onset of illness in the period January 14-March 4, 1980. One patient, who had onset on January 20, was a student at UNC. The source of this student's illness could not be traced to any of the cases in the community.

During the vaccination campaign, approximately 2,500 of the 20,000 students enrolled were vaccinated. A questionnaire concerning symptoms during the 4 -week period following vaccination was sent to 500 vaccinees and 500 unvaccinated controls; 611 questionnaires were returned (61.1% overall response) of which 269 (53.8% response) were from vaccinees and 342 (68.4% response) from unvaccinated controls. Of the vaccinees, $162(60.2 \%)$ gave a history of prior measles vaccination and $63(23.4 \%)$ reported having had measles. Of the unvaccinated controls, $200(58.5 \%)$ gave a history of prior measles vaccination and $137(40.1 \%)$ reported having had measles. Respondents included 471 $i 77.2 \%$) undergraduate and $139(22.8 \%)$ graduate students.

Analysis of responses concerning symptoms (Table 1) revealed no difference between the vaccinated and the unvaccinated control groups with respect to fever, rash, rhinorthea, cough, sore throat, eye pain, headache, or bedrest.

Massachusetts: From March 20 to May 5, 1980, 22 cases of rash illness were identified among students in 4 dormitories at the University of Lowell. Fifteen cases were diagnosed as measles by private physicians; 2 cases were confirmed serologically. Following a review of student immunization records, measles-mumps-rubella (MMR) vaccine was
TABLE 1. Rates of symptoms among vaccinees and unvaccinated controls during the 4 Weeks following measles vaccination, Chapel Hill, North Carolina, 1980

Symptom	Percent of vaccinees	Percent of unvaccinated controls	P value
	$\mathrm{N}=269$	$\mathrm{~N}=342$	
Fever	6	4	NS
Rash	3	1	NS
Runny nose	9	6	NS
Cough	4	4	NS
Sore throat	9	6	NS
Eye pain	3	NS	
Headache	8	5	NS
Illness requiring bedrest	4	1	NS
Pain and swelling at vaccination site	8	-	-
Reedness at vaccination site	3	-	-
Nor			

[^3]
Meas/es - Continued

administered during the last week of April to 3,062 of the 8,900 registered students and employees.

Two weeks later, a questionnaire concerning vaccine reactions was distributed in the dining hall of 1 dormitory complex. Of 670 questionnaires distributed, 536 (84\%) were returned: $388(68.9 \%)$ from vaccinees and $175(31.1 \%)$ from unvaccinated students. of the respondents, 447 (79.4%) were male and 116 (20.6%) were female.

Analysis of the frequency of symptoms during the 2 -week period following the vaccination campaign revealed no significant differences between vaccinated and unvaccinated groups with respect to fever, rash, sore throat, cough, or photophobia (Table 2). However, there were significantly higher rates of headache and arthralgia among vaccinees.
TABLE 2. Rates of symptoms among vaccinees and unvaccinated controls following MMR vaccination, University of Lowell, Massachusetts, 1980

Symptom	Percent of vaccinees	$\mathrm{N}=388$	Percent of unvaccinated controls

*Not significant.
The difference in frequency for 1 or more constitutional symptoms between vaccinees (54.9%) and nonvaccinees (42.3%) was also statistically significant. Local reactions consisting of pain or swelling at the injection site were reported by 17.7% of the vaccinees. The University of Lowell is now requiring physician proof of previous measles illness or measles vaccination for student admission this fall.
Reported by LF King, A Peterson, RN, University of Lowell; LM McCartin, MD, K Donnelly, RN, Lowell Health Dept; NJ Fiumara, MD, State Epidemiologist, M McDonough, RN, Massachusetts State Dept of Public Health; J Taylor, MD, J McCutchan, MD, University of North Carolina, Chapel Hilli J Robinson, Orange County Health Dept; M Hines, DVM, State Epidemiologist, J MacCormack, MD, North Carolina State Dept of Human Resources; Surveillance and Assessment Br, Immunization Div, Bur of State Services, and Field Services Div, Bur of Epidemiologv, CDC.
Editorial Note: In a recent article, a high frequency of side effects was reported after a measles vaccination campaign was undertaken on a college campus in Los Angeles in res' ponse to a measles outbreak (1). Of special concern was the fact that 17% of the vac cinees required bedrest. The absence of a control group in that study made it impossible to distinguish potential vaccine reactions from background illnesses.

Four controlled studies in young adult recipients of measles vaccine have now been reported. Vaccination of measles-susceptible Air Force recruits did not show an increased rate of adverse reactions over that of controls with respect to dispensary visits, hospitalizations, eye pain, pharyngitis, coryza, cough, myalgias, joint pain, diarrhea, and headache (2) but did show a slight increase in reports of fever. Vaccination of college students during a measles outbreak in Wisconsin showed a significantly higher rate of fever and rash in vaccinees than in controls (3). However, there was no difference between vac cinees and controls with respect to sore throat, cough, coryza, headache, and confine ment to bed. In the North Carolina study reported here, none of the symptoms were

Measles - Continued

significantly more common among vaccinees. On the basis of a history of prior measles illness and/or measles vaccination, the majority of adults in the vaccinated group probably were immune to measles before being vaccinated in the UNC campaign. Of note is the absence of high rates of adverse reactions to vaccination in this group, a concern that has been raised about vaccination in adults with prior measles immunity. In the Massachusetts study, only arthralgia and headache were significantly more common among vaccinees.
Arthralgia is most likely caused by the rubella component of the MMR vaccine (4).
Thus, controlled studies, to date, have not shown that young adults have an increased risk of serious adverse reactions from measles vaccination. With the large numbers of susceptible students attending college, a number of campus outbreaks have been recorded; thus it is essential that this group be protected. The requirement of documentation of previous measles illness or measles vaccination for attendance at high school and college is the best way to assure protection of this group.
References

1. Krause PJ, Cherry JD, Deseda-Tous J, et al. Epidemic measles in young adults. Ann Intern Med 1979;90:873-6.
2. MMWR 1979;28:553-4.
3. MMWR 1980;29:21-2.
4. MMWR 1978;27:453.

Raccoon Rabies - Florida

On April 25, 1980, a pet raccoon that had had contact with 150 children and adults during the previous 7 months was diagnosed as rabid by fluorescent-antibody (FA) examination of brain tissue. The animal had exhibited its first signs of illness on April 21. Exposure histories were obtained for persons who had had contact with the animal during the 60 days before it became ill, and postexposure prophylaxis with human rabies immune globulin (HRIG) and duck embryo vaccine (DEV) was recommended for 74 perSons. Seventy-one persons received a complete postexposure vaccination series of HRIG and 23 doses of DEV. The 74 exposures were bites (10), scratches (23), licks (17), petting only (16), other* (6), and unknown (2). Of these 74 exposures, $52(70 \%)$ occurred in school, $9(12 \%)$ at home, $1(1 \%)$ in another setting, and $12(16 \%)$ in unknown sites. There were 43 males (58%) and 31 females exposed; most of those exposed (72%) were 13 to 15 years old (range 10-63 years).

The raccoon had been found in the woods in Okaloosa County, Florida, on September 15, 1979. It was taken into a home, and a pet collar was placed on its neck. However, the animal soon was released, and it stayed in the general vicinity, begging food. On November 15, a nearby shopkeeper and his wife, assuming, because of the raccoon's collar, that it was someone's lost pet and therefore safe to keep, took it in as a house
pet.

After that date, the raccoon was in captivity and was not free to roam. However, it escaped for a 24 -hour period during the first week of January 1980. On April 21, it began to exhibit aggressive behavior, anorexia, choking, and staggering, and it was taken to a veterinarian. It bit the veterinarian and his assistant before it was killed and examined. FA tests of brain specimens were positive for rabies virus. The animal had never been vaccinated. *Included feeding, holding, or touching the animal.

Rabies - Continued

Exposure to this rabid animal resulted in the administration of 554 cc of HRIG @ $\$ 18.29$ per cc, or $\$ 10,132$, plus 1,883 doses of DEV @ $\$ 2.97$ per cc, or $\$ 5,592$. The estimated cost for physicians, nurses, and local epidemiologic investigative time was $\$ 4,440$ ($\$ 60$ minimum per exposed person). In addition, the estimated cost for persons counseled but not considered exposed was $\$ 1,460$ ($\$ 20$ per person). Thus, the minimum estimated cost for this exposure to a pet raccoon was $\$ 21,624$, a figure which does not include the time of state and federal epidemiologic and laboratory personnel.
Reported by DB Stroup, DVM, Fort Walton Beach, Florida; E Calvert, E Wentworth, MD, JW Wiegreffe, MD, U.S. Air Force Regional Hospital, Eglin Air Force Base; E Sultan, M Sanders, BS, MPH, (RS), Okaloosa County Health Dept, Florida; ED Lord, BS, D Willis, MS, Pensacola Regional Laboratory, RA Gunn, MD, MPH, State Epidemiologist, HT Janowski, BS, MPH, O Sussman, DVM, MPH, Florida State Dept of Health and Rehabilitative Services; Respiratory and Special Pathogens Br, Vird Diseases Div, CDC.
Editorial Note: This incident is noteworthy for several reasons. First, it points out once again the potential hazard of harboring wild animals as pets. There is no way to determine if an animal caught in the wild is incubating rabies. Secondly, this episode illustrates the need to assess possible exposures to avoid overtreatment. Many of the persons treated in this incident were probably not exposed to the virus. As noted in the ACIP Recommendations on Rabies Prevention (1), exposure is defined as contamination of scratches, abrasions, open wounds, or mucous membranes with infectious saliva. Petting, per se, is specifically noted as a non-exposure. Rabies virus cannot penetrate unbroken skin, and this must be kept in mind in determining exposure potential. Finally, this episode illustrates that the pathogenesis of rabies in wildlife is still incompletely understood, a fact which affects treatment. Persons were treated who had been "exposed" as long as 60 days before the raccoon's onset of illness because the period of preclinical shedding for wildife is unknown, although some data would suggest that it is short (i.e., less than 3 weeks). By contrast, persons exposed to rabid dogs and cats are only treated if their exposure was up to 10 days before the animal's onset of illness because it is known that dogs and cats shed virus for only a few days before illness develops.

The decision in this case to use a 60 -day risk period cannot be medically challenged although it may have resulted in unnecessary treatment. Given the present inability to prevent or recognize rabies in wild animals and the increasing frequency with which pet wildlife are being found rabid, it is strongly recommended that wild animals not be harbored as pets.

Reference

1. MMWR 1980;29:265-72, 277-80..

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
 PUBLIC HEALTH SERVICE / CENTERS FOR DISEASE CONTROL ATLANTA, GEORGIA 30333 OFFICIAL BUSINESS

Postage and Fees Paid
U.S. Department of HHS

Director, Centers for Disease Control WIlliam H. Foege, M.D. HHS 396

Director, Bureau of Epldemiology Philip S. Brachman, M.D.

Editor

Mlchael B. HCA5 MILLSMA00007517921SXXX
S
Managing Edit Anne D. M
Mathematical Keewhan C

MRS MARY ALICE MILLS
OIRECTOR, LIBRARY BLDG 1-4007

[^0]: "For comparison purposes, from March 1, 1976-December 31, 1979, the total number of PPNG cases was 11.

[^1]: All delayed reparts and corrections will be included in the following week's cumulative totals.

[^2]: - Mortality data in this table are voluntarily reported from 121 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
 **Pneumonia and influenza
 \uparrow Because of changes in reporting methods in these 4 Pennsylvania cities, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.

[^3]: ${ }^{*}{ }^{2}$ ot significant.

